
-- *- -UNLIMITED

AD-A241 595

RSRE
MEMORANDUM-N0.4503

ROYAL S1GNALS & RADAR
ESTABLISHMENT

I -it!CT 77E -

v f -
- -5

UES;DAMNED LIES AND DATABASES

Author S.Vrsemim

' -oca 'n i s bn apzoved

co

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,

RSRE MALVERN,
WORCS.

0

-91-13154

UNLIMITED

OlOS837 3394

copmm C)fc

WUSO L~tim

Pew qutdae not necessao raable t m ets of me p~bc or so co~etaa

ROYAL SIGNA.TSAND RADAR BErABU ET

Memorandmn 4503

Tle: Lies, Damned Lies and Databases

Author. Simon Wiseman

Da July 1991

Abstract

A database is usually expected to give correct and complete answers to queries.
However, some applications take confidentiality to an extreme and require the
database to deceive some users by supplying incorrect answers. This paper examines
these requirements and studies the effectiveness of three database security techniques
in this area.

Acceseo ,,.o

. L &I -

By

D' I A ; i v

Copyright (1-I
Controller HMSO London

1991

- - *

lies, Damned Lies and Data]bases

A database management sys.,m CDB S) provides services for storing and retrieving
information in a way which is logically independent of the physical storage structures
employed. In a secure database, where confidentiality is of prime concern, the stored
information is ascribed various classifiations and there is a requirement that no user, or
process running on their behalf, may obtain information unless their clearance dominates its
classification.

In .iddition to ensuring that information is not directly given to users with insufficient
clearances, the DBMS, like any other secure system, must ensure that classified information
is not !eaked indirectly. Highly classified information could be encoded, using the facilities
of the DBMS, in a way which makes it appear to be of lower classification. Users with low
clearances who know the encoding scheme would then receive highly classified information
from a Trojan Horse operating at the higher level.

An additional requirement is that the database schema must be inferentially secure
[Morgenstern88], that is highly classified information can never be inferred from lowly
classified information. Solving this inference problem, and the allied aggregation problem,
is the concern of the database design process, and has been dealt with elsewhere [Lunt89].

So it is necessary for both the design of the database schema and the DBMS to be secure-
However, confidentiality is not the only security problem. Integrity is an important concern
and is partly addressed through the use of constraints in the database schema. The use of
constraints can be likened to the use of defensive programming techniques. They are the first
line of defence for integrity as they ensure the database is always in a valid state, though they
do not guarantee that this state is appropriate [TerryS9l. By offering constraint enforcement as
a general service, a DBMS makes the implementation of robust applications more cost
effective.

One important reason for using a DBMS to store information is, therefore, that it helps preserve
the integrity of the information it holds. However, there are applications where different users
are required to have views of the same information which, while they are individually self-
consistent, actually contradict each other. In particular, a database can be required to lie about
the true state of the world to some users. At first sight this appears to be a requirement for
databases which have no integrity, but actually the database must lie consistently and
properly, and the integrity of the lies is extremely important.

Most of the examples of this kind arise in the military intelligence arena, however a good
example occurs in the medical world

1
. On reaching a conclusion about a patient's condition, a

Doctor might tell the patient they have Bronchitis and send them offfor hospital tests. However,
the Doctor tells the hospital that lung cancer is suspected. The deception must be maintained to
avoid premature concern in the patient and embarrassment to the Doctor.

This paper examines some of the requirements for databases which are intended to deceive
some users and compares the effectiveness of three secure database implementation
techniques in this kind of application. Section two introduces some example requvements for
deceptive databases while section three informally presents security models for three
implementation techniques. In section four, the suitability of the three techniques is examined
with respect to applications which deceive with integrity. Finally, section five summarises the
position.

1
This example was given by John Dobson at the 1990 IFIP WG11.3 Database Security

Workshop to illustrate a point from [Martin901.

1

There are requirements for arious differcnt Linds of eception in a secure database. These
range fim "white lies. whi0i seek to prziect the innocenit fto the sordid truth, to the really
deceitful lies which aim to mislead and co rrpt. 'This section discusses the various
possibilities and iilestrates the-- with examples, bat .irst it considers what the responses of an
honest database shouH be.

11 Honest R7epliJes

Typica]ly, a database is interrogated by requests that ask for all irformation meeting certain
criteria, such as 'how far is USS Nebula from Earth?. To such questions an honest secure
database %ould reply either with the required information, or with notification that the user has
insufficient clearance to calculate the result, or with notification that the resulting
information itself is too higlily classified, or perhaps some combination of all three.

The following example is given to illustrate these three kinds of honest response. The notation
of the fact model is used [Sowcrbutts9O], and the facts, question and replies are summarised in
Figure 2.L

The facts.
Unclassified: Nehul is going somewhere
Confidential: NEbula is going to Fath
Secret: Nebua is AM parsecs from E&Ith

The question.
"How far is Nebula from Earth?'

The answers.
Unclassified: you have iafficient clearance to calculate answer
Confidential: you are not cieered to know the distance
Secret: 42.59

Figure 2.1: Example facts and honest answers to a question.

So USS Nebula is going to Earth and is currently at a distance of 42.59 parsecs, and this
information is Secret. However, the fact that Nebula is going somewhere is Unclassified and
that its destination is Earth is Confidential. Users who ask 'how far is USS Nebula from
Earth?' will get different answers depending on their clearance.

A user with a clearance of Unclassified would get the answer "you have insufficient
clearances to calculate the answer'. This is because ne DBMS must check that Nebula is
actually going to Earth, but it finds that a Confidential fact must be examined to ascertain
whether this is true. Therefore the reply cannot be "Nebula is not going to Earth" Lecause it
might be, so the DBMS gives the non-committal, but truthful, reply which essentially says it
doesn't know (at that level of clearance). Note that the same answer would be received if the
Unclassified user asked "how far is USS Nebula from Vulcan?".

A Confidential user would receive "you are not cleared to know the distance". This is on the
basis that the DBMS can tell that Nebula is going to Earth, but when it Poes to find out the
distance it discovers the user is not cleared to see it. Thus the DBMS is able to give a reply
which confirms that the Nebula is heading for Earth, but the actual distance cannot be
revealed. Again this is an honest reply, and is more detailed than that given to the
Unclassified user, but it is not the complete answer.

A Secret user obviously gets the answer "42.59" which is the whole truth. This does imply the
fact that Nebula is going to Earth, but this fact :s o, ly Confidential and therefore no leak has
occurred.

2

tI

Research has shown that Photon Torpedoes, carried by all Federation Starships, may be
hizardous to the health of the crew. However, to avoid lowering mzrale it is necessaiy not only
to keep the details secret but also to classify the very existence of the information. Anyone
wilhout the appropriate clearances who asks about the health hazards of Photon Torpedoes will
be told "there is no information of that kind".

An example of this is shown, in Figure 2.2. The database deceives Unclassified users, by
claiming that no such information is stored. Confidential users get an honest answer, to the
effect that there is no information of that kind available to them but there is information which
they cannot see. Secret users are told that the information does exist, but they are not allowed to
know the details. Only Top Secret users get the complete truth.

The facts.
Unclassified: nothing is known
Confidential: there is some Secret information
Secret: there is data about radiation from the Mk4 torpedo
Top Secret: IUkl torpedo emits 2.4 femtoUrgs per second

The question.
"Pow much radiation does the Mk4 torpedo emit?'

The answers.
Unclassified: there is nothing about radiation from MK4 torpedos
Confidential: if that information exists, you cannot see it
Secret: you are not cleared to know the radiation output
Top Secret- 94.8

Figure 2.2: Example of denying the existence of information.

Note that the reply to Unclassified users categorically denies the existence of the information,
which is a complete lie, whereas Confidential and Se.-ret users receive truthful, but incomplete,
answers.

2S Cover Stories

The invasion of Romulan space by the Federation needs to be a well kept secret, since success
relies on complete surprise. So when USS Constitution is loaded with invasion troops and sent
to Romulus, a cover story has to be invented to avoid suspicion.

The facts.
Unclassified: Constitution is going to Romulus
Confidential: Constitution has a covert mission
Unclassified: Constitu ,on is going to omilus to (diveraid
Secret: (invade.

The question.
"Why is Constitution going to Romulus?"

The answers.
Unclassified: to deliver aid
Conndential. low users think its to deliver aid, but its really something covert
Secret- low users think its to deliver aid, but really its to invade

Figure 2.3: Example of a cover story.

3

Thus the general public are told that Constitution is on a mercy mission to deliver aid, while
highly cleared users are told of its real purpose. It is possible that there are some users who
know the mission is covert and that a cover story has been created, but they cannot find out
details of the real mission. Figure 2.3 shows the example, with the cover story shown by
enclosing the different versions in brackets. This is-to emphasise the difference between
having two contradictory facts and having a cover story.

In this example, a Starship can be heading to only one destination at any one time and this can
only be for one reason. If the cover story was simply given as an additional fact at the Secret
level, as in Figure 2.4, this would contradict the Unclassified fact. This contradiction violates
the integrity constraint of unique destination and purpose per ship.

Thus in figure 2.3 the notation shows that the Constitution is going to Romulus to invade, and
this is Secret. It also says that a cover story exists, which can be seen by Unclassified users.
The story is that the Constitution is going to Romulus to deliver aid. By contrast, figure 2.4
shows the Constitution is going to Romulus to invade and deliver aid. There is no information
available to indicate that the Unclassified fact represents a cover story, since it may simply be
that inconsistent data has been entered.

Unclassified: Constitution is going to Ror.uh- to deliver aid
Secret: Consitution is going to Romubus to invade

Figure 2.4: Facts which violate integrity.

So the integrity constraint which insists each ship has a unique destination and purpose is
important. Without it an errant user or application software would be able to send Constitution
to Romulus for refueling at the same time as it is going to invade (or rather deliver aid if you
are not cleared to Secret). The use of weakened forms of integrity, such as Polyinstantiation
Integrity [Denning88], go some way to avoiding this problem, but these do not stop an errant
program at a different security level entering the contradiction.

24 Sewecv about Chainges

Eventually, when the Constitution reaches Romulus, the cover story is revealed, but later the
Enterprise heads for Romulus to support the ill fated invasion. This is common knowledge,
however, on route the Enterprise falls prey to a previously unencountered life form. Back at
HQ, intelligence sources realise that Enterprise isn't going to make it to the battle. However,
this information must be kept Secret since the Romulans are currently falling back and the
Federation troops are pressing forward, all because they think the Enterprise is coming

The facts.
Unclassified: En±trprise is going to £omj2si'
Unclassified: Entexndrse will reach flua ine(ibj__)
Secret: ~k

The question.
"When will Enterprise reach Romulus?"

The answers.
Unclassified: 1hour
Secret: low users think its 1 hour, but really its 1 week

Figure 2.5: Example of secrecy about changes.

This example is just like a cover story, though it arises in a different way, and is shown in
Figure 2.5. As far as the Unclassified Federation troops and any eavesdropping Romulans are
concerned, the Enterprise is about to arrive. However, the commanders know that it has been
seriously delayed and can make suitable plans.

4

The difference between this kind of example and cover stories is that here the Unclassified fact
started off as the truth. Only later did the truth change to a highly classified fact and the low
information became a cover story. With a cover story, the truth is initially highly classified
and a misleading version is deliberately entered with a lower classification.

The facts.
Unclassified: Enterris is going to Romultv
Secret (Tactical): Entporise will reach Romulus in 04)
Secret (Strategic): U J

The question.
"When will Enterprise reach Romulus?'

The answers.
Unclassified: you are not cleared to know
Secret (Tactical): 1.084 weeks
Secret (Strategic): I week

Figure 2.6: Example of a precis.

The example shown in Figure 2.5 gives different answers depending on the user's clearance,
though it is also possible that the answer could depend on some other attribute of the user, such
as their role. This is useful if the requirement is to hide changes which occur frequently, as it
can be used to present certain users with a precis of some information. This kind of"white lie"
is quite different to a cover story, since it can actually be beneficial because it hides rapidly
changing irrelevant detail

Figure 2.6 gives an example of a precis which is based on whether the user is playing a
Tactical or Strategic role. The tactical information is accurat- but will be changing rapidly,
though most changes will be small and irrelevant to the Stra'tegic user who wants a more global
picture Obviously some integrity constraints would be required to ensure that the Strategic
picture does not become too out of line with the Tactical information, but this concern is not
addressed here.

In this example, the Secret users ask the same question but receive a reply which depends on
their role Although they need not know of the other's existence, it is not of paramount
importance to keep the other hidden. This differs from cover stories where hiding the existence
of a cover can be vital.

A problem that occurs with rapidly changing information concerns the ability to serialise
concurrent transactions. From an integrity point of view it is essential that all concurrent
execution of transactions can be seen as some serial execution of the transactions. Generally,
schemes which ensure this are the basis for covert channels in a secure DBMS, but proposals
have been made for secure serialisation [Keefe9O]. These however are prone to availability
problems, whereby a highly cleared user wishing to obtain a consistent picture of lowly
classified information may repeatedly be rolled-back because the low information keeps
changing. The use of a prdcis would reduce the frequency of changes and make it more likely
that the high users could complete their work.

3. Secure Database Models

In this section, three techniques for database security are described. Rather than describe them
in terms of a data model and argue that they are secure, a security model is used to model them
and this is related to the relational data model as a justification of the model's
appropriateness. The use of a model to describe the way in which the techniques work is
necessary to enable the confidentiality controls, on which the integrity of the deceptions rely, to
be clearly identified. Also it avoids describing specific secure DBMSs, which necessarily

5

introduce additional constraints and features which are not directly relevant to this
discussion.

A simple Bell-LaPadula style of security model (Bell741 is used. The important aspects of this
model are that-

1). Objects are classified containers and a policy of "no flows down" is enforced;

2). No flows down is not violated by transitions which involve a "pure write" or "append" kind
of alteration of high Objects while also observing or modifring low Objects;

3). Objects may be created and destroyed and an Objects classification may be raised at any
time, though an addressing Hierarchy is employed to ensure that no covert channels arise
through these operations;

4). An Objects classification may be lowered at any time, subject to the controls of the
Hierarchy and as long as its original contents are completely destroyed and the new
classification dominates the sources of the new contents;

5). The roots of the Hierarchy are either fixed or their creation and destruction is subject to
some unspecified control which avoids the potential covert channels.

The models presented here are abstract interpretations and do not necessarily reflect how such
databases are implemented in practice. Also, it is likely that more constraints will be imposed
on the database by implementation considerations.

The most widely proposed and used technique for providing secure DBMSs is called
Polyinstantiation I [Denning87]. Other flavours of Polyinstantiation have been proposed
[Haigh90 [Jajodia90, but all are covered by the model given here.

There are two kinds of Object in this model: collections of facts and schema details. A
collection of facts has a classification, which applies to all facts in the collection. The
Collection Objects can only be accessed through the Schema Object that describes the facts that
they contain. The classification of a Schema Object is always dominated by the classification
of any Collection that it refers to.

The Schema Objects correspond to tables in the relational model. The Collection Objects
contain single level subsets of the table. If data is classified at the row level, all rows of the
same classification are stored in one Collection Object. If fields are separately labelled, data
from different Collections must be joined in some way, [Denning87] [Jajodia9O], to reconstruct
the multi-level information.

A new fact ran be added to the database by adding it to one of the collections. This alters one of
the Collection Objects and so the user must have a clearance which is dominated by the
classification of the collection. The user's clearance must also dominate the classification of
the Schema Object in order that they can "address" the Collection Object.

Although this model allows a user to overclassify a fact, by inserting it into a Collection Object
whose clearance strictly dominates their clearance, it is unlikely to be implemented because of

1Polyinstar.tiation refers to the simultaneous existence of multiple objects with the same name
that are distinguished by their classification [Denning87]. Allowing polyinstantiation is one
technique for closing covert channels that arise %hen creating and deleting objects.
Polyinstantiation is not an inevitable consequence of multi-level security.

6

the difficulty in providing a "pure" write which alters just part of an Object. Thus in practice it
is likely that a user will only be able to insert a fact at their own level.

Similarly, a user can delete a fact which is in a Collection whose classification dominates
their clearance, but again this is likely to be limited in an implementation to deleting at their
level.

Users can observe facts which are in a Collection Object only if its classification is dominated
by their clearance.

A high user cannot update a low fact, but Polyinstantiating databases generally change such
requests into inserts at the higher level. The low Collection is observed, the fact is modified
according to the requested update and then inserted into a collection whose classification is
that of the user's clearance. No low Collection Object has been modified so the operation
preserves confidentiality.

For example, suppose the database contained the Unclassified fact that "En±ezie is carrying
Bananas to EIrJ". If a Secret user were to change the cargo to Missile, this would be
translated into an insert of the Secret fact "Enterj is carrying Misses to Earth'.

However, an insert is not possible if an appropriate collection does not exist to hold the new fact.
A new Collection Object can only be created by a user whose clearance equals the classification
of the Schema Object. This is because the address of the new Collection Object must be written
into the Schema Object, which is its parent in the Hierarchy. This problem can be overcome by
having a Schema Object per security level, but in this paper the simpler model will be used as it
does not materially affect how polyinstantiating databases can be used for deception.

A user who wishes to establish the truth of a fact must be able to observe the appropriate Schema
Object in order to determine which Collection Objects need to be examined. If the fact is found
then it is true, but if the fact is not found it is either false or too highly classified for the user to
see.

In general, some of the facts described by a schema will be too highly classified for the user to
see Thus it is not possible to enforce integrity constraints which can only be established by
examination of all the facts. Polyinstantiating databases can therefore only enforce
weakened forms of Entity Integrity and Referential Integrity [Burns90].

As an example, suppose that the database contains two Schemas, beth Unclassified. The first
concerns captains of starships and says that facts of the form "- is the Captain of the _" are
stored. The second Schema is about starships' destinations, with the facts having the form "- is
going to '". The actual facts about captains can be either Unclassified or Secret, because the
Schema refers to two Collection Objects with those classifications. Similarly for destinations.
However, there are currently no Secret facts about captains. This is shown in Figure 3.1. Each
box is an Object and the arrows and indentation reflect the Hierarchy.

U is the Captain of thej
- U Irk is the Captain of the r

S is the Captain of the Reliant I
-*S

U is going to _ -
U FFnej ieis going to Romnulus

---.. is gS oin ih

Figure 3.1: Two Schemes each with two Collections.

7

I
! N"

Now suppose that a Secret user wishes to change the destination of the Enterprise to Vulcan. The
user can observe the fact that Enterprise is currently heading for Romulus, because the
Collection is Unclassified, but is prevented from altering it because this would be a write down.
However, the polyinstantiating database treats the user's update as a request to insert a new
fact at the higher level. Thus a new Secret fact is placed in the Secret Collection. Figure 3.2
shows the position after this update

U ListheCaptainofthe_4
- U firk is the Captain ofthe Enterprise

Kahn is the Captain of the Reliant
-* S

U is going tom
U Enepieis going to Romulus

-* S Reiantisgoing to axth
Endeirx.as is going to Y_1alm

Figure 3.2: After updating Enterprise's destination.

Note that the original fact, that Enterprise is going to Romulus, still exists. It is visible to
Unclassified users, who are unaware that any change has been made. Secret users can observe
both the original fact and the new one.

It was the intention that ships have unique destinations, thus this example database has lost its
integrity. If the user had logged in at Unclassified and deleted the fact that "Enterprise is
going to Romulus" and then logged in at Secret and inserted "Enterprise is going to Vulcan",
integrity would have been preserved. However, a low user could always insert contradictory
information without knowing it.

Thus with Polyinstantiation, integrity cannot be enforced except by careful design of the
application (Burns90]. However, this detracts from the benefit of using a DBMS.

32 View Based Classification

A lesser known alternative to Polyinstantiation for enforcing confidentiality in databases is
the use of View Based Classifications EWilson88] [Knode88]. In this model there are Schema
Objects and Value Objects. A Schema Object describes a class of facts, such as is going to_,
and gives all possible facts, whether they are true or not, With each possible fact is kept the
address of the Value Object which records whether the fact actually is true or not.

In relational terms, a view is a description of all possible tuples that could occur in the view,
along with a note of which tuples are currently in the view. A tuple may only be inserted into a
view if it is one of the possible tuples. When views are used to classify information, a
classification is attached to each possible tuple in the view and this is the classification of the
tuple if it becomes part of the view.

In the model, the Schema Object contains a description of a view, by enumerating all the
possible facts. However, in practice the view will he described algorithmically and the
true/false values will be represented by storing the facts corresponding to the true values. In
order to reduce the amount of trusted code required, systems using this technique only allow
simple view definitions (Garvey88l, but the model describes the general situation.

When a new class of facts is introduced, all the possible facts are calculated and a description
is placed in a new Schema Object. For each possible fact, a new Value Object is created and is
associated with the possible fact. The creation of all these Objects mast be controlled, perhaps
using the Hierarchy, in order to avoid a covert channel.

8

* I III

The Value Objects are given a classification which is appropriate for the fact if it were true.
This may be higher than the clearance of the user who is creating it. The initial value of the
fact is set as appropriate, though obviously this cannot be with a value of true if the
classification is higher than the clearance of the user, unless such deliberate
overclassification is required.

The classification of a fact may depend on information other than its own value, such as the
truth of other facts. Thus it is possible that the Schema may refer to several Value Objects for the
same possible fact. Integrity constraints will usually ensure that only one of these has the
value true.

A new fact is added to the database by changing the appropriate Value to true. In order to do this
the user's clearance must be dominated by the classification of the Value Object, to avoid a flow
down, though usually the user's clearance and the classification will be equal. Note that new
Objects are created only when new kinds of fact are introduced, rather than when possible facts
are made true. Thus no covert channel arises through inserting new facts. Deleting facts is
similar.

Updating involves changing one Value Object to false and another to true. Since the user's
clearance must be dominated by the classifications of both Value Objects in order for them to be
altered, it is generally the case that a user may only update a fact "at their clearance".
However, as noted by [Garvey88], it is possible for the database to "polyinstantiate" by
converting an update of a low fact into an insert of a high fact.

A user who wishes to establish the truth of a fact searches the appropriate Schema Object for a
description of the fact of interest. The corresponding Value Object is then examined to find the
answer. If the user can observe the corresponding Value Object, then the answer can be
determined as true or false. However, if the user's clearance does not dominate the
classification of the Value Object the answer cannot be determined.

Generally, integrity constraints can be applied to ensure that those facts which are flagged as
true form a consistent picture. Users may only modify the database if they, or the DBMS on
their behalf, can determine that the integrity constraints are still met. The proposals in
[Wilson88] and [Knode88] ensure this is possible in certain important cases by restricting each
fact to having at most one classification.

U KIkis the Captain ofthe Entrprise - F~
irk is the Captain ofthe Entgrnrise S

I~irj is the Captain ofthe Constitution C C E
Kahn is the Captain of the lcliant - U

U Ekntepise isgoingto Rlus U
Enerpis is going to Vulan S

IEnterpriisgoingtoEah U U
IReliant is going toVuan -* U

Figure 3.3: Two classes of fact each with four possibilities.

Now consider the example, shown in Figure 3.3, where the database contains two Unclassified
facts. There are actually two classes of fact, described by two Schema Objects. Each describes
four possible facts and so addresses four Value Objects of varying classificatior.. Note that the
example views do not admit all possible combinations of elements, so for some unspecified
reason it is not possible for Kahn to be the Captain of the Enterprise.

Assume that Entity Integrity is in force for both schemas, that is a Ship may only have one
destination and that a Captain can only be in charge of one Ship. Now consider the example
where a Secret user attempts to change the destination of the Enterprise from Romulus to

9

VUlas The user is hable th age Obe Valte o ieacfleiniot is g d to St
false, because t tos is an Un tisie 0ed ind so the nt, bt d h e us tle a vlw scure
However, unless this fact is mrked ass amse, s innei o ble l.e om asto
Vuppos bemuse of ntias ntegrity.

One way out of this impase is to use poyinseantiatian Tis are the Secret mae to ad a tedestination without altering the original. However', this does no preserve Entity Intert,
since the ship nd up wth two eiteno

The only method for changing from an UncLssified destination ta a Secret one is fir arn

Unclassified user to change the Value Oeat of the original destination to false and a Secret
user to add the new destination. Obeiouy ifthis rus a real user to log in atinglabels
and then to changllow th s clre tinconvient, but the use of a multi-leel sta r eworkstation, such as [CummingM.87L would undoubtedly improve the user itrae

However, the need to "log n twice raises a more serious intsgr nty problem in somi s.
Suppose the database has an integrity constraint which insists that a ship always has exactly
one destination. The problem is thate because two transactions are required to make the update
an illegal state, in which the ship has either no as xatl one destinations, becomes visileto others.

A potential solution to these problems is to use high water marks, or floating labels
[Wodward87 , to allow the users clearance to rise during a transaction. At the start of thetransaction the user's clearance is set to Unclassified. The usei sets 'Enterprise is going to
Romulus to false. The classification is now raised to Secret and the user ddeedes on the new
destination, Vulcan, and "Enterprise is going to Vulcan" is set to true. Once the update has
completed, the changes can be committed. This means that no other user sees the database in
an inconsistent state, that is the Enterprise alwayas exactly one destination.

However, this solution is not secure because of the nature of transactions. A user can propose tomodify low data and then decide whether to commit or roll back the transaction on the basis of
high data. This causes a downward flow because the changes to low data depend on high data.
Thus high water marks within a transaction are insecure.

A more subtle problem is illustrated by this example. If the constraint that a ship always has
one destination is enforced, once the update has been completed an Unclassified user can infer
that Enterprise is head, ng to Vulcan. This is because the Unclassified user is able to see that it
is heading nowhere else. While this problem can be avoided by suitable data design [Lunt89], it
does mean that any schemas designed for such a secure database will have to be evaluated in
some way to determine that they do not admit such an inference problem. The need for such
scrutiny was recognised by [Wilsong8J, but such inferences are actually a potential problem in
all secure systems, though they become more evident in databases because the data has more
structure and classifications are applied with a finer grain of protection.

Another alternative to Polyiiistantiation is the Insert Low approach (Wiseman90a]. In this
model there is an Object for each class of fact, which contains schema information, and one for
each true fact. The Schema Objects contain the addresses of the Fact Objects, which are their
subordinates in the Hierarchy. The Fact Objects referred to by a Schema Object may have
various classifications, all of which dominate the classification of the Schema Object. When a
new Schema Object is created, the Hierarchy, or some unspecified control, is used to ensure
that no covert channel is admitted.

In relational terms, the Schema Object corresponds to a table and the Fact Objects to a row or
field, depending on the granularity of labelling. The Hierarchy ensures that users can only
detect the existence of fields and rows if their clearance allows them to -pass through" the
table. If fields are individually classified, a row is made up of several Fact Objects, each

10

dei erigtbsi rel} ashipleweent Ie sibset cf the colums. Thus te -e geerl ly more
Facts per r--w than there are cohons.

When a am fadis insert, anew Fact Objectis created, as; sube ate to the Schea O3t,
and the value cfthe factis place" in iL In addition, the address of the new Fad Obj-ctmustbe
placed in the Schema Objec, thus the user's clearance ust equal the classification of the
Schema Objed. However, the new fat may bae a greater classification, thougih the user would
then be unable to see what they have inserted.

So only low users can insert, hence the name of the approach. WhRle this may sound
excessively retictive it actually places no more constraints on the users other than are
required for the enforeent of both confidentiality and integrity.

Similay, to delete a fact it is necessary to remove its Addres from the Schema Object- Thi
means that only users whose clearance equals the classification of the Schema Object can
delete facts.

To update a fact, a user must first find the appropriate Fact Object and modify it. Thus their
clearance must be dominated by the classification of the Fact Object. However, the user will
normally observe something of the Fact Objects original value, since pure writes are difficult
to achieve in practice, and so the clearance will usually equal the classification.

Auser who wishes to establish the truth ofafactnmust examine all the Fact Objects referred toby
the appropriate Schema Object. If all the necessary Fact Objects can be observed, the user
obtains a complete answer. However, if some have classifications which are not dominated by
the user's clearance, the answer may not be complete.

Integrity constraints can be applied generally, but users may only modify the database if they
(or rather the DBMS on their behalf) can establish that the constraints are not violated.

For example, in order to determine that Entity Integrity is preserved when inserting a new
fact, it is necessary to be able to examine all existing facts to check that the "key" is not already
present. The users clearance must equal the classification of the Schema Object to be able to
insert and so if any Fact Object has a classification higher than that of the Schema Object the
user will be unable to confirm that Entity Integrity is upheld1 . Note that a user with higher
clearances could check for Entity Integrity but is prevented from inserting because of the
"existence" covert channel. That is, unless the "key" facts all have classifications equal to the
Schema Object's classification, new facts cannot be inserted.

So although it is not strictly necessary for keys to be single level, on the whole they will be to
allow new facts to be inserted. This introduces a potential availability problem, but it is easily
controlled by applying integrity constraints to the classifications of the Facts.

Now consider the example of a user wishing to change the Enterprise's destination from
Romulus to Vulcan. The fact that the destination is to change is unclassified, while the fact that
the destination is to be Vulcan is Secret. Obviously the user is cleared to at least Secret.
Initially the database contains two Schemas, each referring to one Fact. This is shown in
Figure 3.4.

U .istheCaptainofthe - U KirkistheCaptainofthe-E-nemris

U 1iseoin to_ U En oiseis oing to nulu
Figure 3.4: Two Schemas with two Facts.

1Rejecting an insert for this reason does not lead to a covert channel because it is only the
value of the fact that is highly classified, not its existence.

11

So the Secre user needs to change the database as seen by Un.lassified user To avoid
downward flows thie uscir mustflo in at Unclassified and delete the fadt that* the Enterprise is
going to Notulus. Nea new Fact Oject is created whi-h is classified Se=r*t,* even tC=gh the
uses current clearance is Unclassified. Into this new Fact Obect is placed some
Unclassified information, nmely that Enter;rise is going s=ewbere (effectively a null).
The usEr now logs oat and back in a. Secret and updates the fd to recod the tr e destination,
Vulcan.

However, suppose there is n integrity constraint which insists that ships always have a
destination. The solution just d-escbed allows the Enterprise to have a null destination for a
short time, contra-y to the integrity constraint. An Oternative approach avoids this Problem-.
The user logs in at Unclassified and upgrades the Fact Obect which records the destination of
the Enterprise. Note that changing the classification of a Fad Object is secure if the user's
clearance equals the Schema Cbjecs clascation, because the Hierarchy hides the change
from users with lower clearsnces. Figure 3.5 shows the database after Cris action has been
committed.

U ListheCaptafi e -- U ikisthe Captain ofthe Er ln
U -sgto_ ; S [Eniniis goingto Iomu

Fure 3.5. After upgrading the Fac.

Once the Fact Object is classified Secret, the user can log in at Secret and update its contents to
the desired value. The final result is shown in Figure 3.6.

U is the Captain ofthe j U Jijt is the Captain ofthef&Ltrrwi-
U L- isg t S Mnivri' is going to elna

Figure 3.6: After updating the Fact.

With the Insert Low approach the opposite is also possible. An Unclassified user may change a
Secret destination to an Unclassified one, assuming that this is reasonable from an integrity
point of view, as follows.

The Schema objects will, in practice, contain information about how facts like "Enterrice is
going somewhere" and "Enternrise is going to Vulcan" are related. This would allow an
Unclassified user to identify which Fact Object contains the Enterprise's destination, though
without revealing the contents of the Fact Object. The Unclassified user may change the
classification of the Fact Object to Unclassified as long as they completely overwrite the
original information

1
. There is no covert channel because the Hierarchy steps any lower user

from seeing the changes.

Figure 3.7 shows the state after an Unclassified user has changed the destination of the
Enterprise to Earth. Note that this is secure since the Unclassified user learns nothing of its
previous destination and that the Hierarchy ensures no user with lower clearances sees the
classification change. Note that this form of"pure write" can be implemented since a complete
Object is overwritten.

U istheCa nof the - U Kiak is the Captain ofthe EntEmise
U 1_is oin to- ;/ U Entar ,eis goingtoEarth

Figure 3.7: After updating the Fact to a lower value.

1
A low user overwriting high data is not a confidentiality problem ([Bell74] allows it!). Like

any alteration of the database, even high users overwriting high data, it is likely that it would
be governed by integrity controls, such as described in [Wiseman9Ob].

12

These methods ofupdating not only avoid polyinstantiation but preserve integrity constraints
which insist that facts of a certain form always exist. The cost of avoiding polyinstantiation is
that the user must log in and out, though this would be alleviated by utflising a multi-level
workstation, but the benefit is that the database's integrity is preserved and that this can be
enforced by the DBMS.

In this section the three techniques for database security are examined with regard their
suitability for applications that require some users to be deceived. The important issue is how
well they enforce the integrity of the deception. If integ-rity cannot be preserved, useMs who
should see the truth may become confused or the users %so are supposed to be deceived, but
without knowing it, may detect inconsistencies which reveal the existence of the deception.

4.1 De,, .Eritence

Denying the existence of a class of facts is relatively straightforward with any of the three
techniques. Essentially the existence of the schema information which describes the sensitive
facts must be hidden from the users who must not know such facts exist.

In all three approaches, the snsitive schema information is held inside Schema Objects,
though these differ in format for each method. Only users whose clearance dominates the
classification of a Schema can olserve details of the schema. Without this information a user
is unable to ascertain whether the information being hidden is of interest. So in most cases
simply classifying the Schema Objects appropriately is sufficient to protect sensitive
information.

However, in extreme cases it is necessary for the database to be constructed so that it does not
reveal everything to some of its users, and yet they remain convinced that nothing is being
withheld from them. A user who finds that they are unable to observe a Schema Object may be
alerted to the fact that the database. is not telling them the whole truth. Thus it is sometimes
necessary to hide the existence of certain Schema Objects, not just their contents.

This, however, is the purpose of the Hierarchy. In the discussions about each approach, it was
assumed that some control was being applied to prevent the creation of new Schema Objects
from being used as a covert channel. Essentially this will be the use of either a special function
which is trusted to not exploit the channel, or some extra level of Hierarchy which will hide the
creation from users whose clearance does not dominate the clearance of the creator.

This extra level of Hierarchy can be used to ensure that users with insufficient clearances
cannot detect the existence of schemas which they must not know exist. However, this is not a
complete solution because these users will discover that there are things they are not allowed to
see, although they will not necessarily know that they are schemas. Unfortunately, Bell-
LaPadula style models do not lie about the existence of Objects (strictly, whether they are
activated or not) and so the problem cannot be fixed within the simple modelling framework
chosen here.

The requirement is for an Object whose existence cannot be detected by users of lower
clearance. Thus, a user should receive the same error message if they attempt to access one of
these hidden Objects as if they attempt to access a non-existent Object. The requirement can be
implemented, though care must be taken to avoid covert timing channels which inadvertently
reveal the two reasons for the same reply. However, in the absence of a suitable model this
paper will leave the problem to future research and just indicate that existence needs to be
hidden by drawing the Object's classification in outline format, eg. C.

To implement the example of section 2 2, two Schema Objects are required Figures 4 1, 4.2 and
4.3 show this for each of the three techniques One Schema lists those torpedoes for which the

13

I

system records radiation information, the other records the actual radiation output for each of
these torpedoes. The existence of both these Schemas is hidden inside a "directory of
Confidential rchemas, thus an Unclassified user cannot d tac that there is any information
which they are not entitled to see. Confidential users will be able to discover that two schemas
exist, but will be unable to determine rhat they describe.

C ISchemes whose existence is Confidential

- S Ithereis data on thae otrpedo h e
-I S Ithereis data on the M4 torpedo

-* T

3 S 1_torpedo emits_ femtoUrgs per second

T torpedo emits B femtUrgs per second

Figure 4.1: Denying the existence of information using polyinstantiation.

Note that if the Confidential "directory" was not hidden from lower users, they would be able to
discover that an Object 'xists which they cannot observe. This is not usually a problem, but in
this example the appl, ,tion wishes Unclassified users to believe there is nothing they cannot
see.

Using polyinstantiation each Schema refers to a number of Collections, in this case two. Facts
are stored in the Collection of the appropriate classification.

Using view based classifications, each possible fact is listed in the Schema. Associated with
each possible fact is a Value Object which indicates whether the fact is true or not. The
classification of the Value Object is what the classification of the fact would be if it were true.

C ISchemas whose existence is Confidential I

S there is data on the JMk torpedo -. T fal"e

there is data on the M4 torpedo - Re

-- S Mk4 torpedo emits 948 femtoUrgs per second S t -]e
HkA4 torpedo emits 8U femtoUrgs per second -- T a

MU torpedo emits A2. femtoUrgs per second -, T [s
Ms torpedo emits 78. femtoUrgs per second T =

Figure 4.2: Denying the existence of information using views.

Using the Insert Low Approach, the facts are each stored in separate Fact Objects, which are
referred to by the Schema Object. The facts classification is that of the Fact Object which holds
it.

14

C [Schemas whose existence is Confidential

--- 3, S Ithereisdaftonthe-torpedo
.. here is data n the MU torpedo

S Ltorpedo emits _ femto Urgs per second
--- T t1M torpedo emits 21 8 femt~~ per second1

Figure 4.3: Denying the existence of information using insert low.

So the ability of an application to deny the existence of information is independent of the chosen
database security technique. The problem is solved by using the Hierarchy to hide the existence
of schemes, though the notion of Hierarchy must be extended slightly to allow the existence of
the hiding mechanism to be hidden.

420ner Stories

For a cover story to be effective, users who are being misled must not realise that the same kind
of information is also held at a higher level, thus the techniques discussed above for denying
the existence of information are necessary. Also, high users must be able to invent the cover
story and enter this with a low classification. This necessitates the user logging in and out or
the use of a multi-level workstation.

U [Schemas whose existence is Unclassified

U I- is going to_
----) U i£ ntjujq is going to ous

U _is oing.toto. I
- U JCnstitutio is going to Raomulus to dda di

C ISchemas whose existence is Confidential

- I- is going to_ to . I
S Constitution is going to R to
T lConstitution is going to EgmuLa to Aadt

Figure 4.4: The problem with polyinstantiation for cover stories.

If these points are covered, any of the three techniques can be used to provide cover stories This
is possible because each can provide the ability to lie about the existence of information.

Using polyinstantiation, the main difficulty is not allowing cover stories, but preventing
spurious ones from being created. Consider again the example shown in Figure 2.3, but
suppose a Top Secret user now wishes to stand down the invasion force. The user is able to
update the mission of the Constitution to standby, however, this change is not seen by any Secret
user. This leads to disaster. Obviously the correct course of action for the Top Secret user is to
log in at Secret and make the change, but the absence of any integrity check for duplicate
missions means this is not enforced. Effectively a new cover story has been invented when one
is not needed, as shown in Figure 4.4.

15

U ISchemas-, "ose existence is Uncassfoife

con titutionssgOsngto-niLb- - - - U re

C jSchemas ;boseexistencel;Confide-ntialI

-~C .'Cjfit~jo is going to Romulus to jiy~d? S
an iina-nIs going t s to' Rta* S

Figure 4.5: Cover atories using views.

View based classifications can be used to provide cover stories, as shown in Figure 4.5. Two
mission schemas are created, one for the cover story and one for the real mission. The real
mission is bidden from Unclassified users, while those with high clearances can see both but
know the difference between the two. The view gives the classification of Constitution being put
or. standby as Secret, therefore a Top Secret user is prevented from updating it directly. By
logging in at Secret the user could set the mission to standby, but integrity constraints would
prevent this if the Constitution is already on an invasion mission, as in this example.

U ISchemas whose existence is Unclassified !

-*U :in 3
U IJsgoing to u 7

U Co :itlo

C j Shemas whose existence is Confidential I

----e c _intoto_ I

-- 5 S Cs is going to Rojaittlto a

Figure 4.6: Cover stories using insert low.

The meihod for providing cover stories with the insert low approach is similar to that with view
based classifications, two schemas are used, one for the cover story and one for reality. Figure
4.6 shows the example. The Top Secret user cannot change the mission because the Fact Object
is Secret and this would constitute a downward flow. Once the user logs in at the Secret level the
update and integrity checks present no problem.

So any of the three techniques provide the ability to iavent cover stories. With
Polyinstantiation cover stories can be invented "on the fly", while the other two techniques
require design time decisions to build the ability to have cover stories into the schemas.
Polyinstantiation therefore has the advantage that a cover story can be inserted without prior
thought, but this is also its weakness because there is no way of preventing the creation of
spurious cover stories.
4.11 Secrecy about Changes

If low information is to be altered by high users, and these changes are to be kept from low
users, then the problem is similar to that for cover stories. However, the difference is that the

16

A-

low information is inserted by low users, which presents no problem. When the high users
wish to update the information the original is left unaltered, and again this presents no real
problem. Thus any of the three techniques for database security provide the ability to keep
changes secret.

In fact the only difficulty is to ensure that the high user can refer to the correct information
without confusion. Initially the low information is correct and this is what the high user will
want to see. However, once this is superseded by high information, the high users will
ordinarily wish to see the high information, though they may explicitly ask for the
information as seen by low users.

So the solution is to use two schemas, one for the low version of the information and one for the
high version when this is different. Low users have access to the low schema and may be
prevented from detecting the high schema. High users have access to both schemas, but really
wish they could see them as one. This can be achieved using a view mechanism, but the view
definition will be complex and implementations usually insist that such views are read-only
[1S089].

Actually, all that is required is a special kind of project view, which is relatively simple to
implement. This yields the high version of a fact if it exists, otherwise it yields the low
version. When such a view is updated, the high version is updated, unless it does not exist in
which case a high insert is performed. Unfortunately, such special purpose requirements are
unlikely to be standardised, and so further research is necessary to investigate how updatable
views can be defined in general.

5. Conclusions

In most secure databases classifying sensitive information is enough of a control, since the
users will not be surprised to discover that there is information which is too highly classified
for them to see. However, there are extreme cases where the existence of such information must
be hidden Further, the database may be required to deceive some users, by presenting them
with a "cover story" rather than the truth. Similarly, the database may be required to hide
changes made to some information from certain users.

Of the three techniques for achieving security in databases described in this paper,
Polyinstantiation is the most widely known technique, but View Based Classifications and the
Insert Low Approach are viable alternatives. Any of these three techniques could be used in a
DBMS which supports databases that deceive their users. However, the requirement is not
simply for a database that deceives, but for one where the deception is controllable.

This is where Polyinstantiation is weakest. Its inability to enforce even relatively simple
integrity constraints means that cover stories can occur unintentionally. The resulting
confusion could have serious consequences.

The two alternative approaches can both accommodate deception in databases, though in a
controlled way. They are also, of course, able to enforce general integrity constraints even
when deception is not required. As such, secure databasces built using these techniques are
likely to have superior data integrity characteristics to those that use Polyinstantiation.

However, both View Based Classifications and the Insert Low Approach do require more
trusted code to implement the DBMS than with Polyinstantiation. As such it is more expensive
to achieve a DBMS of a given assurance using these techniques. However, applications which
use a Polyinstantiating DBMS may be more expensive to produce, because it is then up to the
application to enforce integrity.

In summary, Polyinstantiation is not the only technique for achieving security in databases,
even when the database is required to deceive some users, and the alternatives ment further

17

attention. Future research must devise database design methods for each database security
technique to allow fair comparisons to be made as to their effectiveness.

[Bef741
'Secure Computer Systems: A Refinement of the Mathematical Model"
D E Bell & LU LaPadula, MTR.2547, Vol 3, Mitre Carp, April 1974

[Burns 901
'Referential Secrecy"
BK Bumrs
Procs IEEE Symp an Security and Privacy, Oakland, CA, May 1990, pp13.142

(Cummings 87]
"Compartmented Made Workstatian: Results Through Pratotyping"
P Cummrings, D Fullsin, M Goldstein, M Goeselin, J Pneciotto, J Waadward & J Wynn
Praca. IEEE Symp an Security and Privacy, Oakland, CA, April 1987, pp2..2

2

[Denring 871
"A Multilevel Relational Data Model"
D E Denning, T F Lunt, B B Schell, M Beckman & W R Shockley
Proca. IEEE Symp on Security and Privacy, Oakland, CA, April 1987, pp220..234

(Denning 881
MTe Sea View Security Model"

D E Denning, T F Lunt, B R Schell, W R Shockley & M Heckman
Pracs. IEEE Symp an Security and Privacy, Oakland, CA, April 1988, pp2 18 .233

(Garvey 881
"ASD.Views"
C Garvey & AWu
Procs. IEEE Symp an Security and Privacy, Oakland, CA, April 1988, pp85..95

[Haigh 90]
'The WDV Secure Relational DBMS Model"
J T Haigh, R C OBren & D J Thomsen
Procs. IFIP WGIl.3 Database Security Workshop, Halifax, England, September 1990

[1S089)
"Information Processing Systems Database Language SQL with Integrity Enhancement"
ISO/lEC 9075:1989(E)

(Jqjadia 901
"Palyinatantiation Integrity in Multilevel Relations"
S JAjodia &R Sandhu
Procs. IEEE Symp on Security and Pnivacy, Oakland, CA, May 1990, pp104..115

(Keefe 901
"Multiversion Concurrency Control for Multilevel S crre Database Systems"
T F Keefe & W T Teal
Procs. IEEE Symp on Secunity and Privacy, Oakland, CA, May 1990, p9 369 .383

(Knode 88)
"Making Databases Secure with TRUDATA Technology"
R B Knode & R Hunt
Procs. 4th Aerospace Comp Sec Applications Conf, Orlando, Florida, Dec 1988, pp 82.90

[Lunt 89]
"Aggregation and Inference: Facts and Fallacies"
T FLunt
Procs. IEEE Symp on Security and Privacy, Oakland, CA, May 1989, pplO2..109

18

[Martin 90]
'Enterprise Modelling and Security Policies

! M Martin & J Dobson

Procs. IFIP WGI.3 Database Security Workshop, Halifax, England, September 1990

[forgenstern 88]
"Controlling Lical Inference in Multilevel Database Syatems"
M Morgenstern
Proc. IEEE Syrmp on Security and Privacy, Oakland, CA, Apri 1988, pp245..255

[Sowerbutt 90]
'Database Architectonics and Inferential Security",
B J Sowerbutts & S Cordingley
Procs. IFIP WGIl.3 Workshop of Database Security, Halifax, England, Sept 1990

[Terry 89]
"A 'New' Security Policy Model"
P Terry & S Wiseman
Procs. IEEE Syrnp on Security and Privacy, Oakland, CA, May 89, pp215..228

[Wilson 881
Wiews as the Security Objects in a Multilevel Secure Relational DBMS"
J Wilson
Procs. IEEE Syrnp on Security and Privacy, Oakland, CA, April 1988, pp70..84

[Wiseman90a]
"Control of Confidentiality in Databases"
S R Wiseman
Computers & Security Journal, Vol 9, Num 6, October 1990, pp529.537

[Wiseman90b]
"The Control of Integrity in Databases"
S R Wiseman
Procs. IFIP WGlI.3 Database Security Workshop, Hahfax, England, Sept 1990

[Woodward 871
"Exploiting the Dual Nature of Senmtivity Labels"
J P L Woodward
Procs. IEEE Syrp on Security and Privacy, Oakland, CA, April 1987, pp2 3..30

19

INTENTIONALLY BLANK

REPORT DOCUMENTATION PAGE ORIC Reference Nurmber (d knw) -------

Ovrnsecuriy dasfca on of sheot ---.-........-... UNCLASSIFIED-.......
(As far as possible Ofts sheet shnould pnt&tn only, unclasified Winfatmo. Iftft Is necessary to enter danssit d Iriformattion, the field concerned
mist be mward to fidicate the dljorflcatlon eg (R), (0) or (S).
Originators Refene/Report No. Month Year

MEMO 4503 JULY 1991

Oniginators Name and Locabon
RSRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monitoing Agency Name and Location

Whe

LIES, DAMNED LIES AND DATABASES

Report Security Classificaton Titl Classification (U, R, C or S)
UNCLASSIFIED U

Foreign Language Titie (on the cane of translations)

Conference Detalls

A database is usually expected to give correct and complete answers to quenies However, some
applications take confidentiality to an extreme and require the database to deceive some users by
supplying incorrect answers This paper examines these requirements and studies the effectiveness of
three database security techniques in this area.

Abtract Ciasshlcobon (UJR.C or S)
U

Descriptors

Distrition statement (Enter any hitabons, on the dsftubbon of the document)

UNLIMITED

INTENTIONALLY BLANK

